这研究在 1 月调查变化日报在中国的温度范围(数据终端就绪) 在 19612000 期间。观察数据终端就绪相对 196180 在 19812000 期间变化首先在 546 个气象站基于每日的温度数据被分析。这些观察数据终端就绪变化被分类进在每种情况中在每日的最大、最小的温度,然后出现频率和数据终端就绪变化的大小取决于变化的六个案例被介绍。三短暂模拟然后被执行在数据终端就绪变化上的直接强迫理解温室气体(GHG ) 和喷雾器的影响:没有人为的放射的强迫的,有人为的 GHG 的,和有 GHG 和人为的喷雾器的五种强迫联合的另一。预言的每日的数据终端就绪在 19812000 也被分类进六个案例并且与观察相比的年期间变化。结果证明为数据终端就绪减小的以前建议的原因,一比温暖的白天的更强壮的夜的温暖,仅仅解释 19.8% 观察数据终端就绪减小天。数据终端就绪减小被发现通常发生在东北中国,与重要地区性的温暖与一致。有独自强迫的 GHG 的模拟与 32.9% 的出现频率复制这类数据终端就绪减小,它比观察价值大。直接强迫的喷雾器主要由白天冷却减少数据终端就绪。喷雾器冷却的考虑独自与 GHG 作为与模拟相比改进数据终端就绪变化的不同类型的出现频率的模拟,但是它不能改进数据终端就绪变化的大小的预言。
This study investigates the changes in January diurnal temperature range (DTR) in China during 1961- 2000. The observed DTR changes during 1981-2000 relative to 1961-80 are first analyzed based on the daily temperature data at 546 weather stations. These observed DTR changes are classified into six cases depending on the changes in daily maximum and minimum temperatures, and then the occurrence frequency and magnitude of DTR change in each case are presented. Three transient simulations are then performed to understand the impact of greenhouse gases (GHGs) and aerosol direct forcing on DTR change: one without anthropogenic radiative forcing, one with anthropogenic GHGs, and another one with the combined forcing of GHGs and five species of anthropogenic aerosols. The predicted daily DTR changes during the years 1981-2000 are also classified into six cases and are compared with the observations. Results show that the previously proposed reason for DTR reduction, a stronger nocturnal warming than a daytime warming, explains only 19.8% of the observed DTR reduction days. DTR reduc- tions are found to generally occur in northeastern China, coinciding with significant regional warming. The simu- lation with GHG forcing alone reproduces this type of DTR reduction with an occurrence frequency of 32.9%, which is larger than the observed value. Aerosol direct forcing reduces DTR mainly by daytime cooling. Consideration of aerosol cooling improves the simulation of occurrence frequencies of different types of DTR changes as compared to the simulation with GHGs alone, but it cannot improve the prediction of the magnitude of DTR changes.