讨论非均匀Chemostat竞争模型半平凡周期解的存在性、稳定性及其正周期解的存在性。通过运用抛物型方程比较原理、稳定性理论、极值原理以及Leray-Schauder度理论,证明了该系统半平凡周期解的存在性和稳定性,得到了该系统正周期解存在的充分条件。
The existence and stability of semi-trivial periodic solutions and the existence of positive periodic solutions for the competition model in an unstirred chemostat are discussed.By using comparison theorems for parabolic equation,stability theory,the maximum principle and the theory of Leray-Schauder degree,the existence and stability of semi-trivial periodic solutions to the system are proved.The sufficient conditions of existence of positive periodic solutions to the system are obtained.