中尺度沙尘暴是美国内华达州、我国北部及中东国家等地沙尘天气的常见形式.为了研究中尺度沙尘暴对量子卫星通信信道的影响,首先分析了沙尘暴的物理特性,根据中尺度沙尘暴的扩散模型,提出了中尺度沙尘特性与量子纠缠度的关系;然后仿真了沙尘特性对量子卫星信道参数的影响.结果表明,如果沙尘扩散时间为12 h,中尺度沙尘粒子半径分别为1和25μm,则量子卫星信道的纠缠度依次为0.6和0.4,信道的利用率分别为0.9和0.8,信道容量分别为0.95和0.8.由此可见,量子信道的各种参数与沙尘暴的特性密切相关.因此,为了提高量子卫星通信的可靠性,应根据沙尘灾变程度,自适应调整卫星信道的各种参数.
Mesoscale sandstorm is a common form of dust weather in Nevada in the US, the northern part in China, and the Middle East countries in the Asia. To investigate the influence of mesoscale sandstorm on the quantum satellite com-munication channels, the physical characteristics of the dust storms are analyzed first. According to the diffusion model of mesoscale storms, the relationship between the proposed scale dust features and the degree of quantum entanglement is established then. The effect of dust on properties of the quantum satellite channel is simulated finally. The results show that if the diffusion time for the dust is 12 hours, the dust particle radii are 1 and 25 μm, the entanglement degrees of quantum satellite channels are 0.6 and 0.4, the utilization rates of quantum satellite channels are 0.9 and 0.8, the capacities of quantum satellite channels are 0.95 and 0.8. The characteristic parameters of the quantum channels are closely related to sandstorms. Therefore, in order to improve the reliability of quantum satellite communications, the parameters of quantum satellite channels should be adjusted adaptively.