提出了一种基于空时联合稀疏重构的红外小弱运动目标检测算法。通过学习序列图像内容而构建的空时联合字典能同时刻画目标或背景的形态特征和运动信息;利用多元高斯运动模式从空时联合字典中提取出目标空时字典和背景空时字典,目标空时过完备字典描述移动的目标,背景空时过完备字典表征背景噪声。将连续多帧图像在空时联合字典上进行稀疏分解,然岳分别利用目标空时字典和背景空时字典中的最大稀疏系数及其空时原子重构信号,获取重构残余能量差异来区分目标和背景。试验结果表明,由同源的空时字典重构的残余能量小,而由异构的空时字典恢复的残余能量大,该方法不仅能提高序列信号表示的稀疏度,还能有效提高小运动目标的探测能力。