位置:成果数据库 > 期刊 > 期刊详情页
一种基于模糊支持向量机软件模块缺陷检测算法
  • ISSN号:0469-5097
  • 期刊名称:《南京大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.43[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京师范大学计算机科学与技术学院,南京210046, [2]南京师范大学强化培养学院,南京210046
  • 相关基金:国家自然科学基金(60873176),江苏省自然科学基金重点重大专项(201IBK005),江苏省自然科学基金面上项一目(201IBK782)
中文摘要:

不平衡数据的分类问题是机器学习研究领域的重要问题,有着广泛的应用,如软件模块缺陷检测.基于支持向量机的不平衡数据分类方法是主流的分类方法之一,受到研究者广泛的关注.本文在已有的基于模糊支持向量机的不平衡数据分类方法的基础上,结合抽样技术,提出了基于模糊支持向量机的不平衡数据分类算法和基于模糊支持向量机的不平衡数据分类集成算法.在NASA的两个软件模块缺陷度量数据集CM1和KC3上的实验结果表明了本文新提出算法的有效性.

英文摘要:

Classification problem on imbalanced data is a key issue in the machine learning field, obtaining data is unbalanced in many real applications, such as the defect prediction for software modules. The classification methods based on support vector machine for imbalanced data is one of the effective classification approaches, many researchers focus on these methods. Due to the software modules defect metric datasets have the characteristics, such as class imbalance and noise, the prediction models based on the normal support vector machine (SVM) can't get satisfactory results. Therefore, in this paper, we make a relatively in-depth study on support vector machine for predicting software module defects. Based on the previously proposed fuzzy support vector machine for imbalanced data classification (FSVM_CIL), integrating sampling technology, in this paper we introduce two improved algorithms: One is FSCM_CIL_RUS, which combines FSVM_CIL algorithm with random under sampling algorithm. Before building software module defect prediction models using FSVM_CIL, we balance the datasets using random under sampling. And the other is an ensemble algorithm called FSVM_CIL RBBag. This algorithm combines the FSVM_CIL algorithm with roughly balanced bagging algorithm. Using FSVM_CIL algorithm to build base classifiers, and then we ensemble the base classifiers to improve the prediction performance. Appling two algorithms to two NASA software module datasets CM1 and KC3, and experimental results show the effectiveness of the newly proposed algorithms, and the combination between FSVM_CIL and the sampling technology or ensemble technology can improve the performance of the module.

同期刊论文项目
期刊论文 23 会议论文 17
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316