对于任意正整数a,令σ(a)表示a的所有因子之和.设n是一个固定的正整数,称正整数x是n-完全数,如果它满足σ(x)+σ(nx)=2(n+1)x.运用σ(a)的一些性质讨论了2^r-完全数的存在性,其中r是固定的正整数,证明了x是2^r-完全数当且仅当x=2^s(2^r+s+2^s-1),其中s是正整数,2^r+s+2^s-1是一个奇素数.
For any positive integer a,let σ(a) denote the sum of all divisors of a. Let n be a fixed positive integer. A positive integer x is called a n-perfect number, if x satisfies σ(x) +σ(nx) = 2 (n + 1) x. Using some properties of σ(a),the existence of 2^r-perfect number is discussed,where r is a fixed positive integer. We prove that x is a 2^r-perfect number if and only if x = 2^s (2^r+s+ 2'^s- 1) , where s is a positive integer, 2^r+s+2^s-1 is an odd prime.