位置:成果数据库 > 期刊 > 期刊详情页
基于深度卷积神经网络的物体识别算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:北京航空航天大学自动化科学与电气工程学院,北京100191
  • 相关基金:国家自然科学基金资助项目(61573048);重点国际(地区)合作研究项目(61620106012);国家国际科技合作专项(2015DFG12650).
中文摘要:

针对传统物体识别算法中人工设计出来的特征易受物体形态多样性、光照和背景的影响,提出了一种基于深度卷神经网络的物体识别算法。该算法基于NYUDepthV2场景数据库,首先将单通道深度信息转换为三通道;再用训练集中的彩色图片和转换后的三通道深度图片分别微调两个深度卷积神经网络模型;然后用训练好的模型对重采样训练集中的彩色和深度图片提取模型第一个全连接层的特征,并将两种模态的特征串联起来,训练线性支持向量机(LinSVM);最后将所提算法应用到场景理解任务中的超像素特征提取。所提方法在测试集上的物体分类准确度可达到91.4%,比SAE-RNN方法提高4.1个百分点。实验结果表明所提方法可提取彩色和深度图片高层特征,有效提高物体分类准确度。

英文摘要:

Focused on the problem of traditional object recognition algorithm that the artificially designed features were more susceptible to diversity of object shapes, illumination and background, a deep convolutional neural network algorithm was proposed for object recognition. Firstly, this algorithm was trained with NYU Depth V2 dataset, and single depth information was transformed into three channels. Then color images and transformed depth images in the training set were used to fine-tune two deep convolutional neural networks, respectively. Next, color and depth image features were extracted from the first fully connected layers of the two trained models, and the two features from the resampling training set were combined to train a Linear Support Vector Machine (LinSVM) classifier. Finally, the proposed object recognition algorithm was used to extract super-pixel features in scene understanding task. The proposed method can achieve a classification accuracy of 91.4% on the test set which is 4.1 percentage points higher than SAE-RNN (Sparse Auto-Encoder with the Recursive Neural Networks). The experimental results show that the proposed method is effective in extracting color and depth image features, and can effectively improve classification accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679