在这份报纸,我们为整个 hyperspectral 图象的稀少的表示设计了一个颜色可视化模型,在哪个,不是仅仅光谱在稀少的表示的信息而且整个图象的空间信息被保留。在稀少的表示后面,稀少的编码字典的有效元素的颜色标签根据稀少的系数被选择然后混合图象被显示。产生图象维持光谱距离保藏并且好可分性。为本地地面对象,建议单个象素的混合数组和改进面向的裂片质地方法是综合的显示每个象素的特定的作文。这也在混合象素颜色显示和罐头避免颜色演讲的混乱被用来重建原来的 hyperspectral 数据。最后,模型有效性用真实数据被证明。这个方法是有希望的并且能在许多地里发现使用,例如精力探索,环境监视,灾难警告等等。
In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on.