针对修边机器人夹紧机构的优化设计开展研究。通过分析夹紧机构的机构组成原理,建立了以夹紧机构工作半径最大化为优化目标,以各转动副位置、支撑底座质量、极限位置、工作半径范围、压杆运动稳定性和驱动杆推程为约束条件的机构优化设计数学模型。模型验证实验中,以夹持直径d=40cm的圆形塑料制品为例,得到了压杆位移、压杆与驱动杆速率比随驱动杆位移变化的曲线,并对驱动杆的运动速度曲线进行了规划。仿真结果显示,优化及运动分析结果满足设计要求,从而为修边机器人的优化设计与自动控制提供了设计参考。
The optimum design of clamping mechanism for a trimming robot was conducted herein. The optimized design model of clamping mechanism was established by analyzing its composition prin- ciples, maximizing its working radius as the optimization target and considering the position of each revolute pair, weight of support base, extreme positions, range of working radius, kinematic stability of pressure rod, stroke of drive rod as the constraints. In the model validation experiments, a round plastic product with clamping diameter of 40 cm was choosed as the processed sample, the results of kinematic analysis of ctamping mechanism show the curves of the displacement change of pressure rod, the ratio change between the pressure rod speed and driving rod speed caused by the displacement changes of drive rod. Finally, the velocity curve of driving rod was planned. Simulation experiments indicate that the results of optimization and kinematic analysis meet the design requirements, and this paper provides an important reference value to the optimized design and automatic control of trimming robot.