位置:成果数据库 > 期刊 > 期刊详情页
基于均值漂移——连通域标记的多目标跟踪算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP242[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]深圳大学计算机与软件学院,广东深圳518060
  • 相关基金:国家自然科学基金资助项目(61001185)
中文摘要:

提出一种基于Mean Shift改进算法与连通域标记的多目标跟踪算法。在多目标跟踪过程中,对目标瞬间丢失、目标遮挡或重叠时目标跟踪失败等情况有较好的改进。在跟踪过程中,当目标丢失时,基于改进的Mean Shift算法能自适应调整搜索窗口尺寸和方向。通过自适应扩展搜索窗口,利用连通域标记算法搜索目标并计算其矩特征来获得跟踪目标的重心和大小信息,并将获得的位置和尺度信息作为下一帧Mean Shift算法跟踪初始坐标和尺度,统计目标区域颜色直方图作为Mean Shift算法目标模型,从而解决了因目标速度过快而引起的目标瞬间丢失问题。最后研究结果显示,这种改进的目标跟踪算法可以有效改善多目标跟踪的性能,实现目标连续跟踪。

英文摘要:

This paper proposed an improved Mean Shift based algorithm and a connected components labeling algorithm for multi-target tracking,which had a good performance in the process of multi-target tracking to deal with the situations as target instant loss,target occlusion and target tracking failure during the overlapping.When the target was missing in the tracking,this improved tracking algorithm—Mean Shift could be self-adapted to adjust the size and direction of search window.What's more,through the self-adaptive extended search window,it made use of connected components labeling algorithm to search target and calculate its moment character as to acquire the tracking target focus and size,and the getting target focus and size will be the tracking initial coordinate and size of Mean Shift in the next frame.Calculated the color histogram of the object region and put the histogram as the object model.That could solve problems as target loss resulted from the over-speed target moving.The final results elicit that this kind of improved target tracking algorithm can be efficient in ameliorating the function of multi-target tracking and realizing target's continuing tracking.

同期刊论文项目
期刊论文 18 会议论文 19 专利 1 著作 1
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049