遗传算法是一种模拟生物进化的算法.它被广泛利用在信号处理、模式识别、人工生命等领域.遗传量子算法是将量子计算和遗传算法相结合算法.采用量子位染色体的表示形式.该算法具有量子计算的量子位和量子位的迭加特性,同时加入了量子旋转门干涉策略,使得进化染色体更好的呈现多样特性.实验表明,遗传量子算法在解决一般函数极值问题中,比遗传算法更具有优势.
Genetic Algorithms is one kind of the algorithm of simulating biological evolution. It is made use of broadly in fields such as signal processing, pattern recognition, artificial life. Genetic Quantum Algorithm combines genetic algorithm with quantum computing. It adopts the quantum place chromosome expression form; the algorithm is based on qubit and the superposition of qubit, and adds quantum gate interferential strategy making various characteristic property of much better feasible evolution chromosome. The experiment indicates that Genetic Quantum Algorithm has more advantage in resolving optimizing problem of the function than Genetic Algorithms.