通过对具有不同取向差的SRR99双晶高温合金试样进行室温拉伸实验,系统比较了取向差对试样拉伸行为、表面形貌、断裂方式和断口形貌的影响.结果表明:取向差为4°的晶界对双晶的拉伸性能几乎没有影响;当取向差达到10°时,晶界的作用开始明显显现;而取向差为16°和18°的晶界对双晶的力学性能影响最大.扫描电镜观察发现:滑移易于贯穿4。取向差晶界,最后沿滑移带开裂,断口呈明显的滑移特征;取向差为10°的双晶在滑移带撞击下,裂纹沿滑移带和晶界同时扩展,最后率先沿滑移带失稳断裂,断口上除有滑移特征,还呈现枝晶间开裂特征;而取向差为16°和18°的双晶,在屈服初期便萌生晶界裂纹,最后沿晶界快速发生断裂,断口枝晶间开裂特征明显.
The tensile deformation behavior, surface morphology, fracture mode and fracture morphology of SRR99 superalloy bicrystals were systematically investigated at room temperature in air. It is shown that the bicrystal with misorientation of 4° has little influence on the tensile properties, however the effect of grain boundary (GB) becomes obvious when the misorientation is 10°, for the bicrystals with misorientations of 16° and 18° the effect of GBs becomes much more serious. It is experimently found that slip is the most important deformation mode in the SRR99 superalloy bicrystals at room temperature. For the bicrystal with misorientation of 4°, slip bands would transfer through GB easily, and finally the specimens fractured along slip bands with typical slip characteristic on their fractography. In the bicrystal with misorientation of 10°, cracks nucleated and propagated either along slip bands or along GBs due to the impingement of slip bands and the strain accumulations, and finally the fracture instability happened along slip bands. The fracture morphology showed not only slip characteristic, but also the features of interdendritic cracks. In the bicrystals with misorientations of 16° and 18°, cracks initiated after yielding, and then propagated along GBs and the fracture surfaces mainly consisted of interdendritic cracks.