研究了平均非扩张型映射T:‖Tx-Ty‖≤a‖x-y‖+b‖x-Tx‖+c‖x-Ty‖,(x,y∈K,a,b,c≥0,a+b+c≤1)的公共不动点的存在性和唯一性.得到平均非扩张型映射T1和T2满足T1T2=T2T1,则T1T2存在唯一的不动点,并且T1和T2存在唯一的公共不动点.本文结果是近期相关文献结果的推广.
This paper investigates the mean nonexpanded mappingT:‖Tx-Ty‖≤a‖x-y‖+b‖x-Tx‖+c‖x-Ty‖,(x,y∈K,a,b,c≥0,a+b+c≤1)the existence and uniqueness of common fixed point.Give that if mean nonexpanded mappings T1 and T2 satisfy T1T2=T2T1,then T1T2 has one and only one fixed point.Furthermore,T1 and T2 has one and only one common fixed point.Our results improve many known corresponding algorithms and results.