位置:成果数据库 > 期刊 > 期刊详情页
Sparse Support Vector Machine with Lp Penalty for Feature Selection
  • ISSN号:1000-9000
  • 期刊名称:《计算机科学技术学报:英文版》
  • 时间:0
  • 分类:O241.7[理学—计算数学;理学—数学] TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]College of Mathematics and Econometrics, Hunan University, Changsha 410082, China, [2]School of Software, Central South University, Changsha 410083, China, [3]School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
  • 相关基金:This work is supported in part by the National Natural Science Foundation of China under Grant Nos. 61502159, 61379057, 11101081, and 11271069, and the Research Foundation of Central South University of China under Grant No. 2014JSJJ019.
中文摘要:

我们与稀少的支持向量机器(SVM ) 在特征选择学习策略。最近,所谓的 L p -SVM (0 p L 1-SVM。然而, L p -SVM 是一非凸并且 non-Lipschitz 优化问题。数字地解决这个问题是挑战性的。在这份报纸,我们再用形式表示 L p -SVM 进有线性客观功能和光滑的限制(LOSC-SVM ) 的一个优化模型以便它能被数字方法为光滑的抑制优化解决。我们人工的数据集的数字实验显示出那 LOSC-SVM (0 p L 1-SVM。

英文摘要:

We study the strategies in feature selection with sparse support vector machine (SVM). Recently, the socalled Lp-SVM (0 〈 p 〈 1) has attracted much attention because it can encourage better sparsity than the widely used L1-SVM. However, Lp-SVM is a non-convex and non-Lipschitz optimization problem. Solving this problem numerically is challenging. In this paper, we reformulate the Lp-SVM into an optimization model with linear objective function and smooth constraints (LOSC-SVM) so that it can be solved by numerical methods for smooth constrained optimization. Our numerical experiments on artificial datasets show that LOSC-SVM (0 〈 p 〈 1) can improve the classification performance in both feature selection and classification by choosing a suitable parameter p. We also apply it to some real-life datasets and experimental results show that it is superior to L1-SVM.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机科学技术学报:英文版》
  • 中国科技核心期刊
  • 主管单位:
  • 主办单位:中国科学院计算机技术研究所
  • 主编:
  • 地址:北京2704信箱
  • 邮编:100080
  • 邮箱:jcst@ict.ac.cn
  • 电话:010-62610746 64017032
  • 国际标准刊号:ISSN:1000-9000
  • 国内统一刊号:ISSN:11-2296/TP
  • 邮发代号:2-578
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:505