设F是特征不为2的任意域,Mn(F)表示F上所有n×n矩阵所组成的空间。对任意A∈Mn(F),若存在λ∈F和幂等阵M∈Mn(F)使得A=λI+M,则称A为Ⅰ-幂等矩阵。设φ:Mn(F)→Mn(F)为线性映射,若当A为Ⅰ-幂等矩阵时,φ(A)也为Ⅰ-幂等矩阵,则称φ保持Ⅰ-幂等矩阵。刻画Mn(F)上保持Ⅰ-幂等矩阵的线性双射的形式,即若φ:Mn(F)→Mn(F)为保持Ⅰ-幂等矩阵的线性双射,则对任意A∈Mn(F),存在可逆阵P∈Mn(F)和线性泛函f:Mn(F)→F使得φ(A)=PAP-1+f(A)I或φ(A)=PAtP-1+f(A)I。
Suppose F is a field of characteristic not 2.Let Mn(F) be the space of all n×n full matrices over F.A matrix A∈Mn(F) is called Ⅰ-idempotent matrix,if there exists λ∈F and an idempotent matrix M∈Mn(F) such that A=λI+M.For a linear map φ:Mn(F)→Mn(F) and an I-idempotent matrix A,if φ(A) is an I-idempotent matrix,then φ preserves I-idempotent matrices.It is shown that if φ preserves I-idempotent matrices,then for every A∈Mn(F),there exists an invertible matrix P∈Mn(F) and λ∈F such that φ(A)=PAP-1+f(A)I,or φ(A)=PAtP-1+f(A)I.