FePt合金薄膜由于具有较强的磁各向异性而在磁信息和磁光信息存储中具有重要的应用。 C 掺杂可精确调控薄膜的磁各向异性,从而可有效地改变薄膜的矫顽场。通过超短激光脉冲与铁磁薄膜相互作用,可以获得非平衡状态下电子、自旋和晶格等自由度之间的动态耦合参数,这是研究超快磁记录材料的物理基础。本文基于瞬态磁光Kerr效应,研究了两种C掺杂浓度下FePt薄膜的超快磁光响应。实验结果表明:瞬态Kerr信号与外加磁场正相关,磁场反向, Kerr信号反号,而瞬态反射率与外加磁场无关;不同C掺杂的FePt薄膜的矫顽场不同,软磁的退磁时间显著小于硬磁薄膜的退磁时间。我们还观测到超快激光在铁磁薄膜中诱导频率约为49 GHz的相干声学声子,该声子的频率与外加磁场无关。实验结果为设计和研制新型磁光薄膜提供了实验依据。
Magneto-optical information storage has been a hot research subject for several years. FePt exhibits abundant physical properties and has received much attention as a candidate material. Its alloy film with perpendicular anisotropy and small grain size has important applications in magnetic recordings due to the large intrinsic magnetic anisotropy which ensures long-time thermal stability of nanometer sized bits. However, the large coercive field of FePt is a significant factor that hinders its application. As is well known, the magnetic anisotropy in FePt alloy can be precisely modulated by carbon-doping, and as a result, the coercive field of FePt film can be modified effectively with the carbon dopant. On the other hand, the microscopic mechanism of magnetic storage relies on the motion of spin system. Ultrashort femtosecond laser has been demonstrated to be a very effective tool to investigate the dynamical coupling among different degrees of freedom, such as electron, spin and lattice in a ferromagnetic film. The research on spin dynamics has become a new frontier of condensed matter physics, which is crucial for ultrafast magnetic recording materials. In this work, by using the time-resolved magneto-optical Kerr effect spectroscopy, we study the ultrafast spin dynamics of two FePt alloy films with different carbon dopants under the applied magnetic field along the film surface. The FePt alloy films with different carbon dopants are fabricated on silicon substrates by the sputtering method. The main experimental findings in this work are as follows. (i) The transient Kerr signal is linearly proportional to the magnetization with the magnetic field up to 0.8 T, while the transient reflectivity of the film is independent of the applied magnetic field. (ii) For FePt alloy films with different coercive fields, it is found that the demagnetization time of the film with smaller coercive field is significantly faster than that of the larger counterpart: the former shows 0.8 ps demagnetization time, and th