针对如何设计一个状态反馈采样控制器使得具有参数不确定性的系统是指数稳定的问题,研究线性不确定系统的采样控制问题。基于输入延迟方法,将采样控制系统转化为具有时变延迟的连续系统,其中系统矩阵的参数不确定性是时变范数有界的且采样区间是有已知上界的。结合Lyapunov稳定性理论引入了一个新的时间依赖Lyapunov函数,以线性矩阵不等式的形式给出了在变采样情况下不确定系统指数稳定的充分条件,并通过具体的仿真算例验证该充分条件的正确性。仿真结果同时说明了采用该方法进行设计的状态反馈控制器可使被控系统具有较好的鲁棒稳定性。
In order to design a state-feedback sampled-data controller,which guarantees linear system with parameter uncertainties is exponentially stable,the sampled-data control problem of uncertain system was studied.Based on an input delay approach,sampled-data control system was transformed into a continuous time-delay system,where the parameter uncertainties are time-varying norm-bounded in both the state and control input matrices and the upper bound of the sampling intervals is known.With Lyapunov stability theory,a time-dependent Lyapunov function was introduced.Sufficient conditions for exponential stability of uncertain system,with which variable sampling,is presented in terms of linear matrix inequality(LMI).Simulation example was given to demonstrate the effectiveness and correctness of the proposed method.In the meantime,the simulation result shows that the proposed controller guarantees the controlled system a better robust performance.