位置:成果数据库 > 期刊 > 期刊详情页
卡尔曼滤波在无线传感器网络节点定位中的应用
  • 期刊名称:journal of knowledge-based innovation in China
  • 时间:0
  • 页码:160-171
  • 语言:英文
  • 分类:TP212[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] U675.6[交通运输工程—船舶及航道工程;交通运输工程—船舶与海洋工程]
  • 作者机构:[1]北京航空航天大学仪器科学与光电工程学院北京100191
  • 相关基金:863计划(2006AA012222)、国家自然科学基金(60873240)和北京市教育委员会共建项目专项资助.
  • 相关项目:无线传感器网络三维定位中坐标求精方法的研究
中文摘要:

为了减小无线传感器网络节点定位中节点测距误差和定位算法自身引入误差的积累对定位精度的影响,建立了适用于无线传感器网络的卡尔曼滤波模型。采用渐消自适应卡尔曼滤波对基于距离的初始定位算法进行求精,通过一跳节点间的相互制约,在全局范围对未知节点进行定位;基于卡尔曼滤波模型,对无线传感器网络的分布式算法和集中式算法的计算量进行了研究,得出计算量与节点数目的关系。研究结果表明,卡尔曼滤波能够有效提高节点的定位精度,尤其适用于网络节点密度小、信标节点比例低的情况。

英文摘要:

A Kalman filter model was established for wireless senor networks to reduce the influence of the accumulation of the location error and the error introduced by localization algorithms on the location precision in node localization. The algorithm for initial estimates based on range was refined by a fading Kalman filter. By the restraint between neighboring nodes, the locations of unknown nodes were computed. The computation of the centralized algorithm and the distributed algorithm was researched based on the Kalman filtering model, and the relationship between the computation and the number of the nodes was obtained. The simulation results showed that the localization precision was effectively improved by the Kalman filter. The Kalman filter is especially applicable to the network in which both the node density and the beacon ratio are low.

同期刊论文项目
同项目期刊论文