位置:成果数据库 > 期刊 > 期刊详情页
ART2神经网络聚类的改进研究
  • ISSN号:1005-9830
  • 期刊名称:《南京理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]天津大学电气与自动化工程学院,天津300072, [2]天津大学系统工程研究所,天津300072
  • 相关基金:国家自然科学基金(60275020)
中文摘要:

为进行快速动态层次聚类,通过分析自适应谐振理论(adaptive resonance theory,ART)神经网络的快速学习、主观设置警戒参数、输出无层次结构等优缺点以及自组织特征映射(self-organizing feature map,SOFM)神经网络的侧反馈、不能动态聚类、输出无层次结构等优缺点的基础上.借鉴Hebb规则的思想,针对ART2神经网络的聚类算法进行了改进研究。通过结构描述、算法分析,该算法融合了ART2和SOFM的优点,克服其不足之处,以快速学习的方式形成可带有多层层次的动态聚类结构(不同的层次代表不同粒度的聚类),此外还降低了对警戒参数主观设置的要求,对于较粗粒度的聚类不再需要重新训练神经网络。并通过仿真实验证明该算法的有效性。

英文摘要:

In order to achieve dynamic clustering with hierarchy structure, after analyzing the short-comings and advantages of adaptive resonance theory (ART) neural network, such as fast study, subjectively setting vigilance parameter and output without hierarchy structure; and after analyzing the shortcomings and advantages of Self-Organizing Feature Map (SOFM) , such as side-feedback, inability of dynamic clustering and output without hierarchy structure, improvement of clustering algorithm of ART2 neural network has been presented with the reference of Hebb Principle. By structure description and algorithmic analysis, this model incorporates the advantages of ART2 and SOFM and overcomes their shortcomings, obtains dynamic clustering structure with multilayer hierarchy structure by fast study (each layer denotes a category of different granularity ) ; this model also reduces the request of setting vigilance parameter and has no demand of retraining neural network of bigger granularity. Finally the effectiveness of the algorithm is demonstrated by simulation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:工业和信息化部
  • 主办单位:南京理工大学
  • 主编:廖文和
  • 地址:南京孝陵卫200号
  • 邮编:210094
  • 邮箱:zrxuebao@njust.edu.cn
  • 电话:025-84315600
  • 国际标准刊号:ISSN:1005-9830
  • 国内统一刊号:ISSN:32-1397/N
  • 邮发代号:
  • 获奖情况:
  • 1997年荣获原国家科委、中共中央宣传部、国家新闻...,2002年荣获首届江苏省期刊方阵"优秀期刊"称号,2004年获教育部"优秀编辑出版质量奖",2006年获教育部颁发的"首届中国高校优秀科技期刊奖",2008年度获教育部颁发的"第2届中国高校优秀科技期...,2009年上海市新闻出版局“第四届华东地区优秀期刊”奖,2010年工业和信息化部“编辑质量优秀”奖,2010年教育部“第三届
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国乌利希期刊指南,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9051