通过利用Nevanlinna值分布理论,考虑了当A(z)、B(z)是有穷级整函数的情况下,线性微分方程f″+A(z)f′+B(z)f=0无穷级解的角域测度。首先得到了一个一般性结果,接下来又结合了整函数的亏值和Borel方向进行讨论,使所得结果得到进一步完善。
By using the Nevanlinna value distribution theory, the measure of infinite order solution of linear differential equations f″+A(z)f′+B(z)f=0 in an angle is considered when A (z) and B (z) is finite order entire function. Firstly a general result is obtained, and then combine the discussion about the entire function of deficient value and Borel directions, the results are further improved.