考虑了一个混合幂次为2,3,4,5的素变量非线性型的整数部分表示无穷多素数的问题.运用Davenport-Heilbronn方法证明了:如果λ1,λ2,λ3,λ4是正实数,至少有一个λi/λj(1≤i〈 j≤4)是无理数,那么存在无穷多素数p1,p2,p3,p4,p,使得[λ1p12+λ2p23+λ3p34+λ4p45]=p.
The present paper considered one problem which integer part of nonlinear form with mixed powers 2, 3, 4, 5 and prime variables represents prime infinitely. Using Davenport-Heilbronn method, we show that if λ1,λ2,λ3,λ4 are positive real numbers,at least one of the ratios λi/λj (1≤i〈 j≤4) is irrational, then there exist infinitely many primes p1,p2,p3,p4,p such that[λ1p12+λ2p23+λ3p34+λ4p45]=p.