采用强磁场下物理气相沉积的方法,通过提高蒸发源温度获得晶粒尺寸逐渐降低的纳米晶Fe薄膜,研究了强磁场对不同晶粒尺寸Fe薄膜生长和磁性能的影响.结果表明,当蒸发源温度为1440℃时,Fe薄膜的晶粒细小,强磁场使薄膜从层状生长变成了柱状生长,有效降低了薄膜缺陷.当蒸发源温度为1400和1350℃时,Fe薄膜的晶粒较粗大,强磁场不能改变其柱状生长方式,但是却提高了柱的宽度.强磁场提高了Fe薄膜的平均晶粒尺寸以及颗粒(由晶粒构成)尺寸、降低了薄膜表面粗糙度.随着晶粒尺寸的降低,强磁场提高Fe薄膜矫顽力、饱和磁化强度和剩磁比的能力增强.
In order to increase the magnetic properties and realize the essential applications in magnetic recording and spintronics devices, it is significant to control the growth mode and grain size of Fe films. In this work,the effects of a high magnetic field(HMF) on the growth and magnetic properties of Fe thin films with different grain sizes by using physics vapor deposition were explored. The decreased grain sizes are obtained by increasing the evaporation source temperatures. It is found that when the evaporation source temperature is 1440 ℃, the grains of film are fine. The growth mode is changed from layered to columnar by HMF. And HMF effectively reduces the defects of Fe film. When the evaporation source temperature is 1400 and 1350 ℃, the grains of films are large. HMF does not change the columnar growth mode of films. However, the width of columns is improved by a HMF. Additionally,HMF increases the average particle(composed of the grains) and grain size of Fe films with different grain sizes.And the surface roughness of all the films is remarkably reduced by a HMF. With the decrease of grain sizes, the ability of HMF on increasing the coercivity, saturation magnetization and squareness ratio of the Fe films is enhanced.