位置:成果数据库 > 期刊 > 期刊详情页
拟矩形剖分上的样条空间的维数(英文)
  • ISSN号:2095-2651
  • 期刊名称:《数学研究及应用:英文版》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]Department of Applied Mathematics Dalian University of Technology
  • 相关基金:the National Natural Science Foundation of China (Nos.60533060; 10726067);; the Natural Science Foundation for Doctoral Career of Liaoning Province (No.20061060);; the Science Foundation of Dalian University of Technology (No.SFDUT07001)
中文摘要:

A quasi-rectangular mesh (denoted by △QR) is basically a rectangular mesh (△R) that allows local modifications, including T-mesh (△T) and L-mesh (△L). In this paper, the dimensions of the bivariate spline spaces Skμ(△QR) are discussed by using the Smoothing Cofactor-Conformality method. The dimension formulae are obtained with some constraints depending on the order of the smoothness, the degree of the spline functions and the structure of the mesh as well.

英文摘要:

A quasi-rectangular mesh (denoted by △QR) is basically a rectangular mesh (△R) that allows local modifications, including T-mesh (△T) and L-mesh (△L). In this paper, the dimensions of the bivariate spline spaces Skμ(△QR) are discussed by using the Smoothing Cofactor-Conformality method. The dimension formulae are obtained with some constraints depending on the order of the smoothness, the degree of the spline functions and the structure of the mesh as well.

同期刊论文项目
期刊论文 127 会议论文 23 著作 1
同项目期刊论文
期刊信息
  • 《数学研究及应用:英文版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:大连理工大学
  • 主编:王仁宏
  • 地址:大连理工大学应用数学系
  • 邮编:116024
  • 邮箱:
  • 电话:0411-84707392
  • 国际标准刊号:ISSN:2095-2651
  • 国内统一刊号:ISSN:21-1579/O1
  • 邮发代号:8-92
  • 获奖情况:
  • 1998年大连市优秀期刊奖,2000年大连市优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:36