位置:成果数据库 > 期刊 > 期刊详情页
面向低信噪比的自适应压缩感知方法
  • ISSN号:1000-3290
  • 期刊名称:《物理学报》
  • 时间:0
  • 分类:TN919.8[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]南京航空航天大学电子信息工程学院,南京210016, [2]南京航空航天大学,雷达成像与微波光子技术教育部重点实验室,南京210016
  • 相关基金:国家自然科学基金(批准号:61071163,61201367,61271327,61471191)、南京航空航天大学博士学位论文创新与创优基金(批准号:BCXJ14-08)、江苏省研究生培养创新工程(批准号:KYLX0277)、中央高等学校基本科研业务费专项资金(批准号:NP2015504)和江苏高等学校优势学科建设工程资助的课题.
中文摘要:

在压缩感知工程应用中,信号往往被噪声和干扰所影响,常规的压缩感知方法难以达到理想的重构效果,特别是低信噪比应用场景中,稀疏重构往往会失效.分析了压缩感知中噪声对重构性能的影响,从理论上解释了压缩感知中的噪声折叠原理,并在此基础上提出了一种基于方向性测量的自适应压缩感知方案.该方案通过后端信号处理系统估计出噪声的相关信息并反馈至压缩感知前端,前端根据反馈的噪声信息调整测量矩阵,从而改变感知矩阵的方向,自适应地感知稀疏谱,从而有效地抑制信号噪声.仿真实验表明,所提的自适应压缩感知方法对稀疏信号重构性能有较大的提升.

英文摘要:

As an alternative paradigm to the Shannon-Nyquist sampling theorem, compressive sensing enables sparse signals to be acquired by sub-Nyquist analog-to-digital converters thus may launch a revolution in signal collection, transmission and processing. In the practical compressive sensing applications, the sparse signal is always affected by noise and interference, and therefore the recovery performance reduces based on the conventional compressive sensing, especially in the low signal-to-noise scene, the sparse recovery is usually unavailable. In this paper, the influence of noise on recovery performance is analyzed, so as to provide the theoretical basis for the noise folding phenomenon in compressive sensing. From the analysis, we find that the expected noise gain in the random measure process is closely related to the row and column of the measurement matrix. However, only those columns corresponding to the support for the sparse signal contribute to the sparse vector. In the traditional Shannon-Nyquist sampling system, an antialiasing filter is applied before the sampling process, so as to filter the noise beyond the passband of interest. Inspired by the necessity of antialiasing filtering in bandpass signal sampling, we propose a selective measurement scheme, namely adapted compressive sensing, whose measurement matrix can be updated according to the noise information fed back by the processing center. The measurement matrix is specially designed, and the sensing matrix has directivity so that the signal noise can be suppressed. The measurement matrix senses only the spectrum of interest, where the sparse spectrum is most likely to lie. Moreover, we compare the recovery performance of the proposed adaptive scheme with those of the non-adaptive orthogonal matching pursuit algorithm, FOCal underdetermined system solver algorithm, and sparse Bayesian learning algorithm. Extensive numerical experiments show that the proposed scheme has a better improvement in the performance of the sparse signal recovery. Fr

同期刊论文项目
同项目期刊论文
期刊信息
  • 《物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国物理学会 中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京603信箱(中国科学院物理研究所)
  • 邮编:100190
  • 邮箱:apsoffice@iphy.ac.cn
  • 电话:010-82649026
  • 国际标准刊号:ISSN:1000-3290
  • 国内统一刊号:ISSN:11-1958/O4
  • 邮发代号:2-425
  • 获奖情况:
  • 1999年首届国家期刊奖,2000年中科院优秀期刊特等奖,2001年科技期刊最高方阵队双高期刊居中国期刊第12位
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:49876