位置:成果数据库 > 期刊 > 期刊详情页
噪声环境下智能机器人语音控制特征提取方法
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨理工大学计算机科学与技术学院,哈尔滨150080
  • 相关基金:国家自然科学基金项目(60575036); 黑龙江省教育厅科研项目(12511101,12511096)
中文摘要:

针对机器人的应用场合通常存在各种噪声干扰的问题,提出了一种基于稀疏编码的语音特征提取方法.利用稀疏编码能稀疏表示语音的特性,在梅尔频域对语音增强后提取特征,将稀疏去噪与语音特征提取相融合,实现了混噪语音的有效补偿.在预设场景中的实验结果表明,与现有特征提取方法相比,所提出的语音特征提取方法能有效降低噪声对语音特征的影响,提高机器人语音控制的性能.

英文摘要:

Despite of significant progress on speech recognition,current techniques cannot satisfy the demands of real applications in robot controls,the main reason is that various noises in environments of robot control substantially degrade the performance of speech recognition.A feature extraction method is proposed based on sparse coding.This method makes use of the de-noising merit of sparse coding and extracts features after removing noise in Mel-frequency domain.Such a strategy integrates spare coding into speech feature extraction and can reduce the effect of noise.Experiments in speech recognition tasks show that the feature proposed possesses strong robustness against various noises and improves the performance of speech recognition in noisy environments.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684