位置:成果数据库 > 期刊 > 期刊详情页
用于求解多目标优化问题的克隆选择算法
  • ISSN号:1001-2400
  • 期刊名称:《西安电子科技大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学智能信息处理研究所,陕西西安710071
  • 相关基金:国家科学基金重点项目资助(60133010,60372045);国家“973”子项目资助(200LCB309403,2006cB705700);教育部重点项目资助(02073)
中文摘要:

提出一种用于求解多目标优化问题的新算法,将抗体群中的抗体分为支配抗体和非支配抗体代替传统算法中对所有个体分配适应度值,以适应多目标优化问题存在一系列无法相互比较的Pareto-最优解的特点;对非支配抗体进行选择,有利于算法向着理想Pareto前端搜索,而且加快了收敛速度;克隆操作实现了全局择优,有利于得到分布较广的Pareto-前端;采用非一致性变异操作以提高算法的局部搜索能力,有利于所得解的多样性.与已有算法相比,新算法所得的最优解分布最广,很大程度上支配着其他算法得到的最优解,评价指标S降低到了3%以下.

英文摘要:

A new algorithm for multi objective optimization problems is proposed. The antibodies in the antibody population are divided into dominated ones and non-dominated ones, which is suitable for the characteristic that one multi objective optimization problem has a series Pareto-optimal solutions. Selecting of the non-dominated antibodies guarantees the convergence to the true Pareto front and the convergence speed. The clonal operation implements the searching for optimal solutions in the global region and is available for getting a widely spread Pareto front. Adopting the nonuniform mutation operation improves the searching for optimal solutions in the local region and assures the diversity of the solutions. Compared with the existing algorithms, simulation results show that the solutions obtained by the new algorithm are most widely spread, dominate those gained by the other algorithms to some extent and depress the metric S to less than 3 %.

同期刊论文项目
期刊论文 104 会议论文 52 著作 5
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591