本文提出了一种基于局部自回归模型和非局部自相似模型的正则化的压缩图像插值技术。传统的基于图像先验模型正则化图像插值技术存在着2个缺陷。一方面,通常是只利用一个图像的先验特性,不能得到视觉质量很好的超分辨率效果;另一方面,在描述图像的非局部自相似特性时,多数利用一种相似块加权的方式来描述当前块,没能够将具有相同纹理的一系列的相似块的特性描述完整。基于以上2点考虑,研究设计整合了2种不同的模型:局部自回归模型和非局部自相似模型,形成一个整体的正则化的框架。不同于传统的只利用高低分辨率之间几何二元性的自回归模型,本文提出了一种自适应加权的在高分辨率图像上迭代的自回归模型;而非局部的自相似模型,并且以相似块组成的一个三维数据结构的变换域稀疏性来对一系列的相似块统一描述。由于压缩图像的特点,研究针对压缩图像提出了软数据精度项,最终采用分离布莱格曼方法来求解整体的正则化目标函数。
The paper proposes a novel image interpolation algorithm,which is formulated via combining both the local autoregressive( AR) model and the nonlocal adaptive 3-D sparse model as regularized constraints under the regularization framework. Estimating the high-resolution image by the local AR regularization is different from these conventional AR models,which weighted calculates the interpolation coefficients without considering the rough structural similarity between the low-resolution( LR) and high-resolution( HR)images. Then the nonlocal adaptive 3- D sparse model is formulated to regularize the interpolated HR image,which provides a way to modify these pixels with the problem of numerical stability caused by AR model. In addition,due to the characteristics of the compressed image,the paper presents soft data accuracy in the optimization problem for compressed images and a new Split-Bregman based iterative algorithm is developed to solve the above optimization problem iteratively.