位置:成果数据库 > 期刊 > 期刊详情页
基于PCA神经网络和D-S决策的瓦斯传感器故障辨识
  • ISSN号:1002-1841
  • 期刊名称:《仪表技术与传感器》
  • 时间:0
  • 分类:TP212[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]安徽理工大学电气与信息工程学院,安徽淮南232001, [2]淮南职业技术学院,安徽淮南232001
  • 相关基金:国家自然科学基金青年科学基金项目(51304007)
中文摘要:

针对瓦斯传感器故障诊断时,存在提取的样本数据空间维数大、诊断实时性差、诊断结论的识别能力低和存在不确定性的问题,提出了一种基于主元分析(PCA)-神经网络和D-S证据理论集成的故障诊断策略。使用主元分析方法对高维故障样本空间数据进行降维,再结合神经网络分类器进行故障模式识别。并且运用DS证据理论对神经网络分类器的故障诊断结果进行数据融合。仿真实验表明:该诊断方法改善了神经网络对瓦斯传感器故障诊断准确率的同时提高了诊断速度,并且降低了故障结论的不确定性以及提高了结论的识别与决策能力。

英文摘要:

For the problems existing in the gas sensor fault diagnosis such as the large space dimension of the sample data,weak real-time of fault diagnosis,poor identification ability of the diagnosis result and the uncertainty,fault diagnosis strategy was proposed based on principal component analysis( PCA) neural network and D-S evidence theory. The principal component analysis( PCA) was used to reduce the high dimension of the fault sample space data,combining the neural network classifiers to identify the fault mode,and the DS evidence theory was used for data fusion in the fault diagnosis results of the neural network classifiers.The simulation results show that the accuracy rate can be improved and the diagnosis speed can be increased by the use of the method. Furthermore,the uncertainty of fault conclusion can be reduced and the ability of the conclusion recognition and decisionmaking can be improved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《仪表技术与传感器》
  • 中国科技核心期刊
  • 主管单位:沈阳仪表科学研究院
  • 主办单位:沈阳仪表科学研究院
  • 主编:刘凯
  • 地址:沈阳市大东区北海街242号
  • 邮编:110043
  • 邮箱:bjb@17sensor.com
  • 电话:024-88718630 88718620
  • 国际标准刊号:ISSN:1002-1841
  • 国内统一刊号:ISSN:21-1154/TH
  • 邮发代号:8-69
  • 获奖情况:
  • 2007年获得北方优秀期刊奖,2007年荣获机械工业期刊质量评审一等奖
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:16968