本文提出了太阳能光伏电池与甲醇中低温重整反应相结合的发电系统;通过太阳能的梯级利用以及物理能与化学能之间的品位耦合,太阳能净发电效率较单一光伏或甲醇热化学发电方式获得显著提升。热力学分析表明,在100~250℃C的系统运行温度范围内,系统的理论太阳能净发电效率达43.6%-44.3%(已考虑光学损失),显著高于光伏系统(22.5%)及热化学系统(32.7%)。系统约50%的太阳净发电量来自甲醇重整产物氢气,以化学能形式实现了太阳能的高效储能,且光伏、热化学发电随温度变化的相反趋势间互补达到了稳定输出的效果。此外,系统产生的电能中约25%来自太阳能,高于单一太阳能甲醇热化学发电系统的14%,对化石能源的依赖度降低。光伏与热化学互补发电为太阳能高效综合利用提供了新的思路。
A hybrid solar power generation system integrating solar photovoltaics(PV) and mid-/low-temperature methanol reforming is proposed;compared with PV-only and methanol thermochemistry-only power generation systems,the hybrid system achieves significant performance gains by cascaded utilization of solar energy and coupling of energy levels between physical energy and chemical energy.Thermodynamic analyses show that the theoretical net solar-electric(NSE) efficiency of the system reaches up to 43.6%-44.3%within the operation temperature range of 100-250℃,significant higher than 22.5%of PV-only system and 32.7%of methanol thermochemistry-only system;50%of the net solar electricity originates from methanol reforming product H_2,achieving effective storage of solar thermal energy in the form of chemical energy;besides,stability of power output of the hybrid system is much enhanced via the complementation between opposite trends of PV module and thermochemical module in response to operation temperature.Additionally,25%of the electricity output of the system is generated from solar energy,higher than that of solar methanol thermochemistry-only power generation system(i.e.14%),decreasing dependence on fossil fuels.Power generation approaches via hybridization between solar PV and solar thermochemistry offer new perspectives towards the grand goal of effective solar energy utilization.