位置:成果数据库 > 期刊 > 期刊详情页
Statistical Monitoring of Chemical Processes Based on Sensitive Kernel Principal Components
  • ISSN号:1004-9541
  • 期刊名称:Chinese Journal of Chemical Engineering
  • 时间:2013.6
  • 页码:633-643
  • 分类:TP277[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TS214.2[轻工技术与工程—粮食、油脂及植物蛋白工程;轻工技术与工程—食品科学与工程]
  • 作者机构:[1]Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, EastChina University of Science and Technology, Shanghai 200237, China
  • 相关基金:Supported by the 973 project of China (2013CB733600), the National Natural Science Foundation (21176073), the Doctoral Fund of Ministry of Education (20090074110005), the New Century Excellent Talents in University (NCET-09-0346), "Shu Guang" project (09SG29) and the Fundamental Research Funds for the Central Universities.
  • 相关项目:基于多元统计与动态模拟的工业反应状况多尺度在线监测研究
中文摘要:

核主管部件分析(KPCA ) 方法采用开始的几个核主管部件(KPC ) ,它为过程监视显示正常观察的大多数变化信息,但是不能反映差错信息。在这研究,敏感内核主管部件分析(SKPCA ) 被建议改进监视性能的过程,即,错过了察觉率处理 T2 统计、摆平的预言错误 SPE 统计数值和还原剂的不和。T2 统计数值能被用来沿着每 KPC 直接测量变化并且分析察觉表演以及在一个过程捕获最有用的信息。随沿着每 KPC 的 T2 统计数值的变化率的计算, SKPCA 为进程监视选择敏感内核主管部件。一个模仿的简单系统和田纳西伊斯门过程被采用在联机监视上表明 SKPCA 的效率。结果显示监视表演显著地被改进。

英文摘要:

The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国化学工程学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国化学工业与化学工程学会
  • 主编:
  • 地址:北京东城区青年湖路13号
  • 邮编:100011
  • 邮箱:cjche@cip.com.cn
  • 电话:010-64519487/88
  • 国际标准刊号:ISSN:1004-9541
  • 国内统一刊号:ISSN:11-3270/TQ
  • 邮发代号:
  • 获奖情况:
  • 1998年化工系统优秀信息成果一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国高分子图书馆,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:385