在这份报纸,动人的横梁由一个粘弹性的基础支持了的一个向轴的方向的横向的颤动被一个复杂形式的分析方法分析。运动的方程基于概括 Hamiltons 原则被开发。特征值和特徵函数是获得的半经分解。管理方程在一种正规州的空间形式被代表,它被二个矩阵定义微分操作员。特徵函数和伴随特徵函数的 orthogonality 习惯于 decouple 在州的空格的系统。到任意的外部刺激和起始的条件的系统的回答在形式的扩大被表示。数字例子被举说明建议途径。免费、强迫的颤动上的基础参数的效果被检验。
In this paper, transverse vibration of an axially moving beam supported by a viscoelastic foundation is analyzed by a complex modal analysis method. The equation of motion is developed based on the generalized Hamilton's principle. Eigenvalues and eigenfunctions are semi-analytically obtained. The governing equation is represented in a canonical state space form, which is defined by two matrix differential operators. The orthogonality of the eigenfunctions and the adjoint eigenfunctions is used to decouple the system in the state space. The responses of the system to arbitrary external excitation and initial conditions are expressed in the modal expansion. Numerical examples are presented to illustrate the proposed approach. The effects of the foundation parameters on free and forced vibration are examined.