In hydraulic turbine engineering,turbine blade vibration reliability assessment is of great significance. Based on the interval mathematical theory, the variables existing in hydraulic turbine blade are described as interval variables. Considering the fuzzy failure criterion of turbine blade distancing from resonance and vibration fatigue stress,fuzzy possibilistic reliability is expressed and analyzed qualitatively taking normal bathtub function as the membership function of blade resonance failure and deflection major type function as the membership function of the intensity failure. As a result,hydraulic turbine blade vibration reliability is analyzed based on the fuzziness of variables and failure criterion. A safer working environment is provided under possibility context by comparing with the qualitative conclusions in the past literature.
In hydraulic turbine engineering,turbine blade vibration reliability assessment is of great significance. Based on the interval mathematical theory, the variables existing in hydraulic turbine blade are described as interval variables. Considering the fuzzy failure criterion of turbine blade distancing from resonance and vibration fatigue stress,fuzzy possibilistic reliability is expressed and analyzed qualitatively taking normal bathtub function as the membership function of blade resonance failure and deflection major type function as the membership function of the intensity failure. As a result,hydraulic turbine blade vibration reliability is analyzed based on the fuzziness of variables and failure criterion. A safer working environment is provided under possibility context by comparing with the qualitative conclusions in the past literature.