位置:成果数据库 > 期刊 > 期刊详情页
一种基于PSO分类器的镜头边界检测算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391.72[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学信息科学与工程学院,沈阳110004, [2]吉林大学计算机科学与技术学院,长春130012
  • 相关基金:国家自然科学基金项目(60573182);国家教育部博士后基金项目(200603900300)
作者: 孟宇, 李文辉
中文摘要:

在将几何约束问题的约束方程组转化为优化模型的时候,需要找到一种方法来跳出局部最优解,进而找到全局最优解。为了兼顾算法的快速性和全局性,几何约束求解时,考虑使用复合粒子群算法。这种粒子群算法是一种基于群智能方法的演化计算技术,不仅在所有的进化算法中都包括控制其自身特性的启发式参数,而且这些参数通常是与特定的问题相关,并可由用户自己定义。虽然合适的参数选择需要用户丰富的经验和对研究问题所提供信息的正确判断,更重要的是,这些启发式参数会影响到算法的收敛特性,但是即便是很有经验的用户也可能选择不恰当的参数,从而使问题得不到有效地解决,这就越来越需要对这些参数进行研究。为此可将将粒子群算法中的控制参数的选取作为一个优化问题,以便用常规遗传算法来控制粒子群算法中的启发式参数,即形成了复合粒子群优化算法,通过把复合粒子群算法成功地应用到几何约束求解技术的实验表明,该方法可以在很短的时间内找到最优解。

英文摘要:

When transferring a geometric constraint equation group into an optimization model, we need a method to jump out of the local beat solution so that we can find a best global solution. Considering the speed and global capability, we adopt a composite particle group optimization algorithm. Particle swarm optimization algorithm is a kind of evolution computation technology based on group intelligence. In all evolution computations heuristic function should be included to control its own characteristic. These parameters are usually correlated with a specific problem and are defined by the users. Suitable parameter choice needs user' s abundant experience and correct judgment on the information offered by the problem. More important thing is that these heuristic parameters will influence the convergence characteristic of the algorithm. Because of this even experienced users may choose an inappropriate parameter and make the problem unable to reach an effective solution. Some research on these parameters need to be carried on more and more. Here we choose the controlling parameters as an optimization solution to the particle swarm algorithm. Thus we can control the heuristic function in the PSO using the ordinal genetic algorithm and propose the composite particle swarm optimization algorithm. Finally we use this algorithm to solve the geometric constraint successfully. The experiment shows that the algorithm can find the best solution in a short time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349