基于在有限区域以内把一个维的反复的混乱自我地图 x =罪恶( 2/x )与无限的倒塌作比较的混乱特征的结果[ −1 , 1 ]到有有限倒塌的一些代表性的反复的混乱地图(例如,逻辑地图,帐篷地图,和 Chebyshev 地图),一个新适应变化规模混乱优化算法( AMSCOA )被使用混乱模型 x =罪恶( 2/x )建议。在优化算法,处理以便在寻求的优化保证它速度集中和高精确的优点,一些措施被采取:1 ) 优化变量的寻找的空格由于适应变化规模方法连续地被减少,寻找的精确因此被提高;2 ) 大多数圆时间被认为是它的控制指南。计算例子大约三严峻的功能表明适应变化规模混乱优化算法高有两个寻找的速度和精确。
Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.