In uncertain data management, lineages are often used for probability computation of result tuples. However, most of existing works focus on tuple level lineage, which results in imprecise data derivation. Besides, correlations among attributes cannot be captured. In this paper, for base tuples with multiple uncertain attributes, we define attribute level annotation to annotate each attribute. Utilizing these annotations to generate lineages of result tuples can realize more precise derivation. Simultaneously,they can be used for dependency graph construction. Utilizing dependency graph, we can represent not only constraints on schemas but also correlations among attributes. Combining the dependency graph and attribute level lineage, we can correctly compute probabilities of result tuples and precisely derivate data. In experiments, comparing lineage on tuple level and attribute level, it shows that our method has advantages on derivation precision and storage cost.
In uncertain data management, lineages are often used for probability computation of result tuples. However, most of existing works focus on tuple level lineage, which results in imprecise data derivation. Besides, correlations among attributes cannot be captured. In this paper, for base tuples with multiple uncertain attributes, we define attribute level annotation to annotate each attribute. Utilizing these annotations to generate lineages of result tuples can realize more precise derivation. Simultaneously,they can be used for dependency graph construction. Utilizing dependency graph, we can represent not only constraints on schemas but also correlations among attributes. Combining the dependency graph and attribute level lineage, we can correctly compute probabilities of result tuples and precisely derivate data. In experiments, comparing lineage on tuple level and attribute level, it shows that our method has advantages on derivation precision and storage cost.