从相对正合2-范畴S出发,给出了2-范畴中拉回的若干性质.首先,证明了拉回在等价意义下是存在且唯一的;其次,设(A1×BA2,f1′,f′2,ξ)为f1与f2的拉回,证明了Ker(f1)与Ker(f′2)等价,Ker(f2)与Ker(f′2)等价;最后,证明了大方框拉回与小方框拉回之间联系的相关结论.
Let S be a relatively exact 2-category,then we get a few proterties c,f the pullback in 2-category. Firstly, we prove that the pullback is unique under equivalence. Then, Let (A1×BA2,f1′,f′2,ξ) be a pullback of f1 and f2, we prove that Ker(f1 ) and Ker (f'2) are equivalent,so are Ker(f2 ) and Ker(f'l ). Finally, we give the relationship between a big pullback diagram and two small pullback diagrams.