位置:成果数据库 > 期刊 > 期刊详情页
基于二级级联支持向量机的人脸快速检测
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:南京理工大学计算机科学与工程学院,南京210094
  • 相关基金:国家自然科学基金(61272419);中央高校基本科研业务费专项资金(309160015104);江苏省产学研前瞻性联合研究项目(BY2014089).
中文摘要:

为提高传统支持向量机无约束人脸检测算法的检测精度,基于可变形模型思想,将整体与局部特征级联方式结合,提出一种新的人脸快速检测算法。在第一层级中,设计整体人脸稀疏特征,以快速地提供精确的人脸候选区域,在第二层级中进行人脸定位,捕捉无约束条件下人脸拓扑形状,提取关键特征点周围鲁棒性特征,得到判别能力强的分类器验证候选区域。实验结果表明,该算法能流畅运行于VGA视频流中,提高无约束人脸检测精度,有效降低误检率。

英文摘要:

In order to improve the detection precision of Traditional Support Vector Machine(SVM) unconstrained face detection algorithms, based on the thought of deformable parts model which combines global and local feature in a cascaded way,a new face detection method is proposed. In the first layer, sparse global face features are designed to obtain the precision candidate face regions quickly. In the second layer, face alignment is implemented to capture the unconstraint face topology shape. Robust features are extracted from the surrounding of face landmarks to obtain a discriminative classifier which verifies the candidate regions. Experimental results shows that the proposed algorithm runs fast in VGA video,improves the unconstraint face detection accuracy and re~dne~ the~ F~lc~ ,q,at,~r.tl ~'a ~F*e~*;.,~I.,

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139