位置:成果数据库 > 期刊 > 期刊详情页
Anisotropic characteristics of granular materials under simple shear
  • ISSN号:1000-7598
  • 期刊名称:《岩土力学》
  • 时间:0
  • 分类:TU457[建筑科学—岩土工程;建筑科学—土工工程] O343.8[理学—固体力学;理学—力学]
  • 作者机构:[1]Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education (Tongji University), Shanghai 200092, China, [2]Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • 相关基金:Foundation item: Projects(10972159, 41272291, 51238009) supported by the National Natural Science Foundation of China Project supported by the Fundamental Research Funds of the central Universities
中文摘要:

The discrete element method was used to investigate the microscopic characteristics of granular materials under simple shear loading conditions. A series of simple tests on photo-elastic materials were used as a benchmark. With respect to the original experimental observations, average micro-variables such as the shear stress, shear strain and the volumetric dilatancy were extracted to illustrate the performance of the DEM simulation. The change of anisotropic density distributions of contact normals and contact forces was demonstrated during the course of simple shear. On the basis of microscopic characteristics, an analytical approach was further used to explore the macroscopic behaviors involving anisotropic shear strength and anisotropic stress-dilatancy. This results show that under simple shear loading, anisotropic shear strength arises primarily due to the difference between principal directions of the stress and the fabric. In addition, non-coaxiality, referring to the difference between principal directions of the strain rate and the stress, generates less stress-dilatancy. In particular, the anisotropic hardening and anisotropic stress-dilatancy will reduce to the isotropic hardening and the classical Taylor’s stress-dilatancy under proportional loading.

英文摘要:

The discrete element method was used to investigate the microscopic characteristics of granular materials under simple shear loading conditions. A series of simple tests on photo-elastic materials were used as a benchmark. With respect to the original experimental observations, average micro-variables such as the shear stress, shear strain and the volumetric dilatancy were extracted to illustrate the performance of the DEM simulation. The change of anisotropic density distributions of contact normals and contact forces was demonstrated during the course of simple shear. On the basis of microscopic characteristics, an analytical approach was further used to explore the macroscopic behaviors involving anisotropic shear strength and anisotropic stress-dilatancy. This results show that under simple shear loading, anisotropic shear strength arises primarily due to the difference between principal directions of the stress and the fabric. In addition, non-coaxiality, referring to the difference between principal directions of the strain rate and the stress, generates less stress-dilatancy. In particular, the anisotropic hardening and anisotropic stress-dilatancy will reduce to the isotropic hardening and the classical Taylor's stress-dilatancy under proportional loading.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《岩土力学》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院武汉岩土力学研究所
  • 主编:孔令伟
  • 地址:武汉市武昌小洪山中国科学院武汉岩土力学研究所
  • 邮编:430071
  • 邮箱:ytlx@whrsm.ac.cn
  • 电话:027-87198484 87199252
  • 国际标准刊号:ISSN:1000-7598
  • 国内统一刊号:ISSN:42-1199/O3
  • 邮发代号:38-383
  • 获奖情况:
  • 全国中文核心期刊,美国《工程索引》EI收录期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:56873