即时大脑活动的第一 neuroimaging 研究几乎十年以前在卓见解决问题期间被进行。许多随后的研究使用了高分辨率的事件相关的潜力(ERP ) 和事件相关的功能的磁性的回声成像(fMRI ) 调查时间的动力学和卓见的神经相互关联。卓见的神经 underpinnings 上的最近的结果导致了研究人员建议叫作深刻大脑的一个神经框架。这个通常认为的框架代表涉及卓见的认知、感情方面的过程的神经基础。深刻大脑可以包含众多的大脑区域,包括侧面的前额的外皮, cingulate 外皮,马头鱼尾的怪兽,优异时间的回转,纺锤形的回转, precuneus, cuneus, insula 和小脑。功能的研究证明了侧面的前额的外皮负责心理集合在卓见解决问题期间变并且碎。cingulate 外皮涉及在新、旧的想法并且进步监视之间的认知冲突。马头鱼尾的怪兽,优异时间的回转和纺锤形的回转形成专攻新奇、有效的协会的形成的一个综合功能的网络。问题代表的有效转变取决于非语言的 visuospatial 包括 precuneus 和 cuneus 的信息处理的网络。insula 反映认知灵活性和与卓见被联系的感情的经验。手指运动的外皮的控制依靠小脑。
The first neuroimaging study of real-time brain activity during insight problem solving was conducted almost ten years ago. Many subsequent studies have used high-resolution event-related potentials (ERPs) and event-related functional magnetic resonance imaging (fMRI) to investigate the temporal dynamics and neural correlates of insight. Recent results on the neural underpinnings of insight have led researchers to propose a neural framework referred to as the "insightful brain". This putative framework repre- sents the neural basis of the cognitive and affective processes that are involved in insight. The insightful brain may involve nu- merous brain regions, including the lateral prefrontal cortex, cingulate cortex, hippocampus, superior temporal gyms, fusiform gyrus, precuneus, cuneus, insula and cerebellum. Functional studies have demonstrated that the lateral prefrontal cortex is respon- sible for mental set shifting and breaking during insight problem solving. The cingulate cortex is involved in the cognitive conflict between new and old ideas and progress monitoring. The hippocampus, superior temporal gyrus and fusiform gyrus form an inte- grated functional network that specializes in the formation of novel and effective associations. The effective transformation of problem representations depends on a non-verbal visuospatial information-processing network that comprises the precuneus and cuneus. The insula reflects cognitive flexibility and the emotional experience that is associated with insight. The cortical control of finger movements relies on the cerebellum.