通过一族多线性积分算子{Θt}〉0定义了一类α-Carleson测度(0〈α≤1).作为应用,给出了多线性仿积πb是从L2(H∞d~)到L~2(Rn)有界的定义:πb(f)(x)=∫0∞ηt*((φt*ff)Θt(b1,...,b_m))(x)dt/t,其中H∞d是Rn上的维Hausdorff容量,这里d=αn.
We define a class of a-Carleson measures(0 α 1) by a family of the multiMnear integral operators {Θt}(t0).As an application,we prove that the multilinear paraproduct πb~-,defined by πb~-(f)(x) = ∫0∞ η_t*((φt * f)Θt(b1,…,bm))(x)(dt)/t,is a bounded operator from L2(H∞d) to L2(Rn),where H∞d denotes the d-dimensional Hausdorff capacity(d = αn) on R~n.