位置:成果数据库 > 期刊 > 期刊详情页
Robustness of hybrid neutral differential systems perturbed by noise
  • ISSN号:1009-6124
  • 期刊名称:Journal of systems science and complexity
  • 时间:2014.11
  • 页码:1138-1157
  • 分类:O175.1[理学—数学;理学—基础数学] X827[环境科学与工程—环境工程]
  • 作者机构:[1]School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China, [2]School of Management, Huazhong University of Science and Technology, Wuhan 430074, China., [3]School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China.
  • 相关基金:This research was supported by the National Natural Science Foundation of China under Grant Nos. 71471070, 61473125, 71171091, 11422110, and 11301198.
  • 相关项目:专利权质押贷款的贝叶斯期权博弈理论评估模型及实证研究
中文摘要:

这份报纸在其解决方案 polynomially 至多成长的切换的政体下面考虑一个给定的中立功能的系统。系统能容忍如果系统服从于另一环境噪音,保存多项式生长的 Brownian 噪音和颜色噪音吗?答案是积极的。这份报纸一起显示那环境噪音和政体切换工作让其答案 polynomially 至多成长的原来的中立微分系统成为答案的一个新中立功能的微分系统将仍然保存多项式生长。这显示这个中立功能的微分系统能容忍没有失去多项式生长的性质的小噪音,它暗示坚韧性。这份报纸也证明标准对作为功能的系统的一种特殊情况的中立延期系统合适。最后,二个例子被给说明主要理论。

英文摘要:

This paper considers a given neutral functional system under regime switching whose solution grows at most polynomially. Can the system tolerate Brownian noise and colour noise to preserve the polynomial growth if the system is subject to another environment noise? The answer is positive. This paper shows that environmental noise and regime switching work together to make the original neutral differential system whose solution grows at most polynomially become a new neutral functional differential system whose solution will still preserve polynomial growth. This indicates that this neutral functional differential system can tolerate small noise without losing the property of polynomial growth, which implies robustness. This paper also proves that the criterion is suitable to neutral delay system which is as a special case of functional system. Finally, two examples are given to illustrate the main theory.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统科学与复杂性学报:英文版》
  • 主管单位:中国科学院
  • 主办单位:中国科学院系统科学研究所
  • 主编:
  • 地址:北京东黄城根北街16号
  • 邮编:100080
  • 邮箱:
  • 电话:010-62541831 62541834
  • 国际标准刊号:ISSN:1009-6124
  • 国内统一刊号:ISSN:11-4543/O1
  • 邮发代号:82-545
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:125