位置:成果数据库 > 期刊 > 期刊详情页
基于已决赔款与已报案赔款相关性的随机性准备金进展法
  • ISSN号:1003-1952
  • 期刊名称:《管理评论》
  • 时间:0
  • 分类:F275[经济管理—企业管理;经济管理—国民经济]
  • 作者机构:[1]南开大学经济学院,天津300071
  • 相关基金:中央高校基本科研业务费专项资金(NKZXTD1101); 国家自然科学基金面上项目(71271121)
中文摘要:

随着我国保险业精算技术的普及与发展,目前对准备金波动性的研究已成为一个新方向,准备金评估随机性方法已在国内保险业得到认可和应用。本文创新性地研究了如何将已决赔款和已报案赔款数据的相关性引入到随机性准备金评估方法中,提出了两种基于相关性的随机性准备金进展法,并通过精算实务中的数值实例,应用R软件加以实证分析。本文的研究对保险公司在准备金评估方法中引入并发展随机性方法,具有十分重要的理论意义和实践价值,也为保险行业开发新的准备金评估软件提供有益的支持和参考。

英文摘要:

With the popularity and development of actuarial techniques in China's insurance industry, the reserves volatility has become a new research topic. The stochastic reserving methods have been recognized and applied in the domestic insurance industry. The paper proposes to study how to introduce the correlation between the paid payments and the incurred payments into stochastic reserving methods, and suggests two stochastic reserve development methods based on the correlation, in order to take account of the correlation between the paid payments and the incurred payments. The first method is a parametric bootstrap method based on bivariate normal distribution, which corresponds to a special copula, i.e., Gaussian copula. The second method is a non-parametric bootstrap method based on resampling pairwise. Numerical illustrations from actuarial practice are provided with R software as positive analysis. We obtain the simulated predictive distributions for the outstanding claims liabilities, as well as the distribution characteristics such as the mean, variance, and percentiles. It is seen that the results from the two methods are very close. The results of the paper have important theoretical significance and practical value for stochastic reserving methods to be introduced and developed into insurance companies, and provide a useful support and reference in developing new reserving software for the insurance industry.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《管理评论》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院大学
  • 主编:吕本富
  • 地址:北京市中关村东路80号7号楼112室中国科学院大学经济与管理学院
  • 邮编:100190
  • 邮箱:mreview@gucas.ac.cn
  • 电话:010-82680674
  • 国际标准刊号:ISSN:1003-1952
  • 国内统一刊号:ISSN:11-5057/F
  • 邮发代号:82-395
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:15896