提出一种光流特征聚类的车载全景序列影像匹配方法。采用非参数化的均值漂移特征聚类思想,以SIFT多尺度特征匹配点的位置量和光流矢量,构建了影像特征空间的空域和值域;利用特征空间中对应的显著图像光流特征为聚类条件,实现了全景序列影像的匹配;最后以全景极线几何约束为条件进行粗差的剔除。通过相同、不同内点率以及不同数据的试验对比分析,本文方法在匹配正确点数和正确率方面要优于经典的Ransac法和金字塔Lucas-Kanade光流法,尤其在场景复杂造成的低内点率情况下,算法表现较为稳定,并可较好地剔除由重复纹理、运动物体、尺度变化等产生的匹配点粗差。