超导技术是21世纪具有重大经济和战略意义的高新技术,在国民经济诸多领域具有广阔的应用前景,如在超导弱电应用中的超导量子干涉器、滤波器;在超导强电应用中的电缆、限流器、电机、储能系统、变压器、磁体技术、医疗核磁共振成像、高能物理实验和高速交通输运等。实用化超导材料是超导技术发展的基础。目前,国际上发现的实用化超导材料主要有低温超导线材、铋系高温超导带材、YBCO涂层导体、MgB2线带材以及新型铁基超导线带材。文章在简要介绍超导材料发展历程的基础上,重点综述了上述实用化超导材料制备及加工、性能和应用方面的最新研究进展,并对相关领域存在的问题及今后的发展作出展望。
Superconductivity has broad and significant potential applications, not only in energy storage, high-speed railway transportation, high-resolution magnetic resonance imaging and ultra-strong magnetic field generation, but also in potentially much larger markets for electric power equipment such as motors, generators, power transmission cables, transformers and faultcurrent limiters for the electric utility grid. Performance improvement in practical superconducting materials is the foundation of application development. The overall picture of superconductor conductors is diverse and developing rapidly. Currently, practical superconducting materials comprise mainly Nb-based low-temperature wires, bismuth-strontium-calcium copper oxide high-tem- perature superconducting tapes, yttrium barium copper oxide coated conductors, MgB2 wires, and new Fe-based tapes. A review is presented here of the fabrication issues, key properties and recent developments of these materials, with an assessment of the challenges and prospects for future applications.