位置:成果数据库 > 期刊 > 期刊详情页
基于小波分析的时间序列数据挖掘
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学管理学院,哈尔滨150001
  • 相关基金:国家自然科学基金资助项目“面向非确定性的商务智能理论与方法研究”(70501009)
中文摘要:

将小波分析和ARMA模型引入时间序列数据挖掘中。利用小波消噪对原始时间序列进行滤波,利用小波变换充分提取和分离金融时间序列的各种隐周期和非线性,把小波分解序列的特性和分解数据随尺度倍增而倍减的规律充分用于BP神经网络和白回归移动平均模型的建模。利用小波重构技术将各尺度域的预报结果组合成为时间序列的最终预报。经过试验验证了该方法的实际有效性。

英文摘要:

This paper presents wavelet method and ARMA model for time series data mining. According to the wavelet denoising and wavelet decomposition, the hidden period and the nonstationarity existed in financial time series are extracted and separated by wavelet transformation. The characteristic of wavelet decomposition series is applied to BP networks and an Autoregressive Moving Average(ARMA) model. Finally, wavelet reconstruction is used to realize time series forcaseting. It shows that the proposed method can provide more accurate results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139