位置:成果数据库 > 期刊 > 期刊详情页
利用超像素混合投票的在线目标跟踪算法
  • ISSN号:1001-2400
  • 期刊名称:西安电子科技大学学报
  • 时间:0
  • 页码:-
  • 分类:TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]西安电子科技大学计算机学院,陕西西安710071
  • 相关基金:国家自然科学基金资助项目(61173091)
  • 相关项目:基于视频传感网络的群体行为感知与异常个体协同跟踪
中文摘要:

针对复杂场景下目标跟踪中目标出现的外观特征变化和遮挡问题,提出一种结合超像素和广义霍夫变换的在线实时目标跟踪算法.该算法从上下文中提取局部特征作为支持因子,构建一个混合的判别产生式对象模型.利用该模型,通过霍夫投票预测目标的中心位置,再通过判别式投票对目标和背景进行概率估计.对图像进行超像素分割,将之前的投票结果映射到对应的超像素,生成基于超像素的概率分布图像.采用贝叶斯跟踪框架,根据后验概率最大化,在概率分布图像基础上确定目标的位置.实验表明,该算法在复杂环境下目标跟踪的过程中对目标发生的形变和遮挡现象有很强的鲁棒性,能够实现准确稳定的在线目标跟踪.

英文摘要:

It is a great challenge to track an object robustly when variations occur such as changes in illumination, appearance or partial occlusion. In this paper, we propose a target tracking algorithm combining superpixel and hybrid Hough voting. Local features are extracted from the context as supporters to construct a hyhrid voting model. By this model, the target center is estimated by the Hough voting scheme. Local features are also distinguished to vote for the target and background, respectively. These voting results are combined into superpixels. Finally, the tracking task is formulated as the maximum a posterior estimate in the voting space. We demonstrate the performance of the algorithm on several public video sequences, which shows that our method is better than other online tracking approaches.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591