利用变指数Sobolev空间理论和临界点理论中的Clark定理,研究一类Kirchhoff型p(x)-双调和方程Navier边值问题.当非线性项满足次临界条件且在零点附近次线性增长时,得到了无穷多解的存在性.
By using the theory of variable exponent Sobolev spaces and the Clark's theorem in critical point theory,the author investigated Navier boundary value problem for a class of Kirchhoff-type p(x)-biharmonic equation. When the nonlinear term satisfied the critical condition and growed linearly near zero,the author obtained the existence of infinitely many solutions.