一个反3平均k-集包含k个互不相同的整数,最小整数为零,且S中任意4个互不相同的元素a,b,c,d满足a+b+c≠3d.反3平均问题是对k≥4,确定反3平均数η*(k)=min{max(S)|S是反3平均k-集}.给出反3平均数η*(k)的性质和若干界,以及可算法化的反3平均集构造方法,进而得到反3平均集的一些性质.
For each integer k≥ 4,an anti-3-average k-set Sis a set having k nonnegative integers and the smallest one being zero such that no distinct a,b,c,d∈S holds a+b+c=3d.Anti-3-average problem is to find the anti-3-average numberη*(k)=min{max(S)|Sis an anti-3-average k-set}.Some properties and bounds ofη*(k)are obtained,and some methods for constructing larger anti-3-average sets are provided.