这份报纸联系到旋转紧缩的二进制代码的 Newtonian 以后 Hamiltonian 动力学,由牛顿的开普勒组成问题并且带, next-to-leading 和 next-to-next-to-leading 作为旋转和 momenta 的线性函数订纺纱轨道 couplings。这种 Hamiltonian 形式什么时候被转变到一种 Lagrangian 形式,除相应于在 Hamiltonian,几个另外的术语,第三 Newtonian 以后(3PN ) , 4PN, 5PN, 6PN 和 7PN 的术语订联合的纺纱纺纱的一样的顺序的术语以外,称为,在 Lagrangian 的产量。那意味着 Hamiltonian 是到在一样的 PN 顺序的 Lagrangian 的 nonequivalent,但是没有任何截断,确切等价于完整的 Lagrangian。没有截断的纺纱纺纱 couplings 的完整的 Lagrangian 是 integrable 并且常规。而它是 non-integrable 并且变得可能混乱,任何一纺纱纺纱什么时候称为,被掉。这些结果也数字地被支持。
This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically.