本文利用锥中不动点指数理论研究了Banach空间中一类二阶非线性奇异脉冲微分方程的Neumann边值问题,得到了正解存在的一个充分条件,将已有文献的一些结果推广到了Neumann边值条件和脉冲微分方程。
This paper investigates a class of second-order nonlinear singular impulsive Neumann boundary value problems in Banach space. A sufficient condition for the existence of positive solutions is presented, and the known results in the literature are extended to the Neumann boundary value problems and impulsive differential equations.